Random Conic Pursuit for Semidefinite Programming

نویسندگان

  • Ariel Kleiner
  • Ali Rahimi
  • Michael I. Jordan
چکیده

We present a novel algorithm, Random Conic Pursuit, that solves semidefinite programs (SDPs) via repeated optimization over randomly selected two-dimensional subcones of the PSD cone. This scheme is simple, easily implemented, applicable to very general SDPs, scalable, and theoretically interesting. Its advantages are realized at the expense of an ability to readily compute highly exact solutions, though useful approximate solutions are easily obtained. This property renders Random Conic Pursuit of particular interest for machine learning applications, in which the relevant SDPs are generally based upon random data and so exact minima are often not a priority. Indeed, we present empirical results to this effect for various SDPs encountered in machine learning; these experiments demonstrate the potential practical usefulness of Random Conic Pursuit. We also provide a preliminary analysis that yields insight into the theoretical properties and convergence of the algorithm.

منابع مشابه

Advances in convex optimization: conic programming

During the last two decades, major developments in convex optimization were focusing on conic programming, primarily, on linear, conic quadratic and semidefinite optimization. Conic programming allows to reveal rich structure which usually is possessed by a convex program and to exploit this structure in order to process the program efficiently. In the paper, we overview the major components of...

متن کامل

LMI Approximations for Cones of Positive Semidefinite Forms

An interesting recent trend in optimization is the application of semidefinite programming techniques to new classes of optimization problems. In particular, this trend has been successful in showing that under suitable circumstances, polynomial optimization problems can be approximated via a sequence of semidefinite programs. Similar ideas apply to conic optimization over the cone of copositiv...

متن کامل

Projection methods for conic feasibility problems: applications to polynomial sum-of-squares decompositions

This paper presents a projection-based approach for solving conic feasibility problems. To find a point in the intersection of a cone and an affine subspace, we simply project a point onto this intersection. This projection is computed by dual algorithms operating a sequence of projections onto the cone, and generalizing the alternating projection method. We release an easy-to-use Matlab packag...

متن کامل

A Polynomial-time Affine-scaling Method for Semidefinite and Hyperbolic Programming

We develop a natural variant of Dikin’s affine-scaling method, first for semidefinite programming and then for hyperbolic programming in general. We match the best complexity bounds known for interior-point methods. All previous polynomial-time affine-scaling algorithms have been for conic optimization problems in which the underlying cone is symmetric. Hyperbolicity cones, however, need not be...

متن کامل

Convex Optimization Models: An Overview

1.1. Lagrange Duality . . . . . . . . . . . . . . . . . . p. 2 1.1.1. Separable Problems – Decomposition . . . . . . . p. 7 1.1.2. Partitioning . . . . . . . . . . . . . . . . . . p. 9 1.2. Fenchel Duality and Conic Programming . . . . . . . . p. 10 1.2.1. Linear Conic Problems . . . . . . . . . . . . . p. 15 1.2.2. Second Order Cone Programming . . . . . . . . . p. 17 1.2.3. Semidefinite Progr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010